60 WarnS(
"minbase applies only to the local or homogeneous case over coefficient fields");
69 WarnS(
"minbase applies only to the local or homogeneous case over coefficient fields");
93 while ((
k > 0) && (h3->m[
k-1] ==
NULL))
k--;
96 while ((
l > 0) && (h2->m[
l-1] ==
NULL))
l--;
97 for (
i=
l-1;
i>=0;
i--)
102 while ((ll <
k) && ((h3->m[ll] ==
NULL)
154 for (
j=0;
j<r->N-1;
j++) names[
j]=r->names[
j];
239 Werror(
"error %d in >>groebner<<",err);
247 void *args[]={temp,(
void*)1,
NULL};
250 temp1=(ideal)temp0->
data;
254 Werror(
"error %d in >>modStd<<",err);
297 void *args[]={temp,
v,
NULL};
300 temp1=(ideal)temp0->
data;
305 Werror(
"error %d in >>satstd<<",err);
322 int rank=
si_max(h1->rank,h2->rank);
329 ideal first,second,temp,temp1,
result;
341 int t=flength; flength=slength; slength=t;
361 while ((
j>0) && (first->m[
j-1]==
NULL))
j--;
366 if (first->m[
i]!=
NULL)
368 if (syz_ring==orig_ring)
369 temp->m[
k] =
pCopy(first->m[
i]);
371 temp->m[
k] =
prCopyR(first->m[
i], orig_ring, syz_ring);
384 if (second->m[
i]!=
NULL)
386 if (syz_ring==orig_ring)
387 temp->m[
k] =
pCopy(second->m[
i]);
402 WarnS(
"wrong algorithm for GB");
407 if(syz_ring!=orig_ring)
414 if ((temp1->m[
i]!=
NULL)
417 if(syz_ring==orig_ring)
423 p =
prMoveR(temp1->m[
i], syz_ring,orig_ring);
440 if(syz_ring!=orig_ring)
474 int i,
j=0,
k=0,
l,maxrk=-1,realrki;
476 ideal bigmat,tempstd,
result;
488 if (realrki>maxrk) maxrk = realrki;
514 for (
i=0;
i<maxrk;
i++)
521 bigmat->m[
i] =
pAdd(bigmat->m[
i],
p);
535 if (syz_ring==orig_ring)
553 WarnS(
"wrong algorithm for GB");
558 if(syz_ring!=orig_ring)
568 if (syz_ring==orig_ring)
578 if(syz_ring!=orig_ring)
581 if(syz_ring!=orig_ring)
631 Warn(
"syzcomp too low, should be %d instead of %d",
k,syzcomp);
635 h2->rank = syzcomp+
i;
687 PrintS(
" --------------before std------------------------\n");
699 WarnS(
"wrong algorithm for GB");
710 int h1_size,
BOOLEAN inputIsIdeal,
const ring oring,
const ring sring)
720 Print(
"after std: --------------syzComp=%d------------------------\n",syzComp);
729 if (s_h3->m[
j] !=
NULL)
755 (*S)->m[
j]=s_h3->m[
j];
767 PrintS(
"T: ----------------------------------------\n");
786 if (s_h2->m[
j] !=
NULL)
788 poly q =
prMoveR( s_h2->m[
j], sring,oring);
836 int ii, idElemens_h1;
842 for(ii=0;ii<idElemens_h1 ;ii++)
pTest(h1->m[ii]);
857 if (orig_ring != syz_ring)
877 if (orig_ring != syz_ring)
882 if (s_h3->m[
j] !=
NULL)
910 if (s_h3->m[
j] !=
NULL)
914 e->m[
j] = s_h3->m[
j];
915 isMonomial=isMonomial && (
pNext(s_h3->m[
j])==
NULL);
934 assume(orig_ring==syz_ring);
936 if (dp_C_ring != syz_ring)
951 if (dp_C_ring != orig_ring)
993 return idInit(1,h1->rank);
1010 if (orig_ring != syz_ring)
1025 if (syz_ring!=orig_ring)
1035 if (syz_ring!=orig_ring)
rDelete(syz_ring);
1036 s_h3->rank=h1->rank;
1056 if (s_temp->m[
j]!=
NULL)
1063 #ifdef HAVE_SHIFTBBA
1069 s_temp->m[
j] =
pAdd(
p, q);
1086 *unit=
mpNew(e_mod,e_mod);
1088 for(
int i=e_mod;
i>0;
i--)
1111 int idelems_submod=
IDELEMS(submod);
1121 return idInit(1,idelems_mod);
1129 return idInit(1,idelems_mod);
1133 WerrorS(
"2nd module does not lie in the first");
1139 comps_to_add = idelems_submod;
1140 while ((comps_to_add>0) && (submod->m[comps_to_add-1]==
NULL))
1144 if ((
k!=0) && (lsmod==0)) lsmod=1;
1146 if (k<submod->rank) {
WarnS(
"rk(submod) > rk(mod) ?");
k=submod->rank; }
1153 ideal s_mod, s_temp;
1154 if (orig_ring != syz_ring)
1189 for(
j = 0;
j<comps_to_add;
j++)
1202 s_temp->rank += (
k+comps_to_add);
1205 s_result->rank = s_h3->rank;
1212 if (s_result->m[
j]!=
NULL)
1222 WarnS(
"first module not a standardbasis\n"
1223 "// ** or second not a proper submodule");
1226 WerrorS(
"2nd module does not lie in the first");
1230 if(syz_ring!=orig_ring)
1241 s_result=
idInit(idelems_submod,idelems_mod);
1246 p = s_rest->m[
j] = s_result->m[
j];
1253 pNeg(s_result->m[
j]);
1256 if ((lsmod==0) && (s_rest!=
NULL))
1260 if (s_rest->m[
j-1]!=
NULL)
1266 if(syz_ring!=orig_ring)
1276 s_rest->rank=
mod->rank;
1283 *unit=
mpNew(idelems_submod,idelems_submod);
1287 poly
p=s_result->m[
i];
1305 else p=s_result->m[
i];
1316 s_result->rank=idelems_mod;
1396 int i,
l,ll,
k,kkk,kmax;
1404 if ((k2==0) && (
k>1)) *addOnlyOne =
FALSE;
1411 if (weights!=
NULL)
delete weights;
1416 if (h2->m[
i] !=
NULL)
1427 *kkmax = kmax =
j*
k+1;
1442 if (h4->m[
i-1]!=
NULL)
1456 if(temph1->m[
l]!=
NULL)
1458 for (ll=0; ll<
j; ll++)
1482 h4->m[
i] = h4->m[
i+1];
1522 if (orig_ring!=syz_ring)
1524 s_h4 =
idrMoveR(s_h4,orig_ring, syz_ring);
1553 m=idModule2Matrix(
idCopy(s_h3));
1554 Print(
"result, kmax=%d:\n",kmax);
1560 if (weights1!=
NULL)
delete weights1;
1578 s_h3->rank = h1->rank;
1579 if(syz_ring!=orig_ring)
1598 int *block0,*block1;
1612 WerrorS(
"cannot eliminate in a qring");
1625 WerrorS(
"no elimination is possible: subalgebra is not admissible");
1635 if (origR->order[
k]!=0) ordersize++;
1642 for (
k=0;
k<ordersize-1;
k++)
1644 block0[
k+1] = origR->block0[
k];
1645 block1[
k+1] = origR->block1[
k];
1646 ord[
k+1] = origR->order[
k];
1647 if (origR->wvhdl[
k]!=
NULL) wv[
k+1] = (
int*)
omMemDup(origR->wvhdl[
k]);
1657 double wNsqr = (double)2.0 / (
double)(
currRing->N);
1661 wCall(h1->m, sl,
x, wNsqr);
1662 for (sl = (
currRing->N); sl!=0; sl--)
1663 wv[1][sl-1] =
x[sl + (
currRing->N) + 1];
1679 block0=(
int*)
omAlloc0(4*
sizeof(
int));
1680 block1=(
int*)
omAlloc0(4*
sizeof(
int));
1681 wv=(
int**)
omAlloc0(4*
sizeof(
int**));
1682 block0[0] = block0[1] = 1;
1683 block1[0] = block1[1] =
rVar(origR);
1706 block0=(
int*)
omAlloc0(4*
sizeof(
int));
1707 block1=(
int*)
omAlloc0(4*
sizeof(
int));
1708 wv=(
int**)
omAlloc0(4*
sizeof(
int**));
1709 block0[0] = block0[1] = 1;
1710 block1[0] = block1[1] =
rVar(origR);
1728 block0=(
int*)
omAlloc0(ordersize*
sizeof(
int));
1729 block1=(
int*)
omAlloc0(ordersize*
sizeof(
int));
1730 wv=(
int**)
omAlloc0(ordersize*
sizeof(
int**));
1731 for (
k=0;
k<ordersize-1;
k++)
1733 block0[
k+1] = origR->block0[
k];
1734 block1[
k+1] = origR->block1[
k];
1735 ord[
k+1] = origR->order[
k];
1736 if (origR->wvhdl[
k]!=
NULL) wv[
k+1] = (
int*)
omMemDup(origR->wvhdl[
k]);
1739 block1[0] =
rVar(origR);
1752 tmpR->block0 = block0;
1753 tmpR->block1 = block1;
1763 WerrorS(
"no elimination is possible: ordering condition is violated");
1780 if (origR->qideal!=
NULL)
1782 WarnS(
"eliminate in q-ring: experimental");
1797 WarnS(
"wrong algorithm for GB");
1808 while ((
i >= 0) && (hh->m[
i] ==
NULL))
i--;
1811 for (
k=0;
k<=
i;
k++)
1823 h3->m[
j] =
prMoveR( hh->m[
k], tmpR,origR);
1835 #ifdef WITH_OLD_MINOR
1839 poly idMinor(
matrix a,
int ar,
unsigned long which, ideal
R)
1843 int *rowchoise,*colchoise;
1849 rowchoise=(
int *)
omAlloc(ar*
sizeof(
int));
1850 colchoise=(
int *)
omAlloc(ar*
sizeof(
int));
1861 for (
i=1;
i<=ar;
i++)
1863 for (
j=1;
j<=ar;
j++)
1879 for (
i=1;
i<=ar;
i++)
1902 int *rowchoise,*colchoise;
1912 rowchoise=(
int *)
omAlloc(ar*
sizeof(
int));
1913 colchoise=(
int *)
omAlloc(ar*
sizeof(
int));
1923 for (
i=1;
i<=ar;
i++)
1925 for (
j=1;
j<=ar;
j++)
1952 for (
i=1;
i<=ar;
i++)
1980 const int r = a->
nrows;
1981 const int c = a->
ncols;
1983 if((ar<=0) || (ar>r) || (ar>c))
1985 Werror(
"%d-th minor, matrix is %dx%d",ar,r,c);
1997 for (
int i=r*c-1;
i>=0;
i--)
2050 if (id1->m[
i] !=
NULL)
2079 if (
w->length()+1 < cmax)
2214 #ifdef HAVE_SHIFTBBA
2220 int i,
k,rk,flength=0,slength,
length;
2241 ((*wtmp)[
i])=(**w)[
i];
2265 if(temp->m[
i]!=
NULL)
2303 if (syz_ring != orig_ring)
2313 unsigned save_opt,save_opt2;
2330 if (wtmp!=
NULL)
delete wtmp;
2336 if (s_temp1->m[
i]!=
NULL)
2354 if (s_temp1->m[
i]!=
NULL)
2362 poly q =
prMoveR( s_temp1->m[
i], syz_ring,orig_ring);
2363 s_temp1->m[
i] =
NULL;
2377 }
while (q !=
NULL);
2390 if (syz_ring!=orig_ring)
2410 #ifdef HAVE_SHIFTBBA
2417 int i,flength=0,slength,
length;
2438 ((*wtmp)[
i])=(**w)[
i];
2461 if (syz_ring != orig_ring)
2472 unsigned save_opt,save_opt2;
2490 if (wtmp!=
NULL)
delete wtmp;
2496 if (syz_ring!=orig_ring)
2537 for (
i=0;
i<(*convert)->length();
i++)
2551 while ((
j>0) && (kbase->m[
j-1]==
NULL))
j--;
2552 if (
j==0)
return -1;
2561 if (
j==0)
return -1;
2623 while ((
i>0) && (kbase->m[
i-1]==
NULL))
i--;
2626 while ((
j>0) && (arg->m[
j-1]==
NULL))
j--;
2630 while ((
j>0) && (arg->m[
j-1]==
NULL))
j--;
2684 int i,next_gen,next_comp;
2688 int *red_comp=(
int*)
omAlloc((
res->rank+1)*
sizeof(int));
2689 for (
i=
res->rank;
i>=0;
i--) red_comp[
i]=
i;
2695 if (next_gen<0)
break;
2698 for(
i=next_comp+1;
i<=arg->rank;
i++) red_comp[
i]--;
2701 for(
i=next_comp;
i<(*w)->length();
i++) (**
w)[
i-1]=(**w)[
i];
2711 int nl=
si_max((*w)->length()-del,1);
2713 for(
i=0;
i<
res->rank;
i++) (*wtmp)[
i]=(**w)[
i];
2723 poly
id_GCD(poly
f, poly
g,
const ring r)
2727 ideal I=
idInit(2,1); I->m[0]=
f; I->m[1]=
g;
2741 ideal I=
idInit(2,1); I->m[0]=
f; I->m[1]=
g;
2769 int cnt=
IDELEMS(xx[0])*xx[0]->nrows;
2771 result->nrows=xx[0]->nrows;
2772 result->ncols=xx[0]->ncols;
2775 number *
x=(number *)
omAlloc(rl*
sizeof(number));
2776 for(
i=cnt-1;
i>=0;
i--)
2782 for(
j=rl-1;
j>=0;
j--)
2791 for(
j=rl-1;
j>=0;
j--)
2804 number n=n_ChineseRemainder(
x,q,rl,
R->cf);
2806 for(
j=rl-1;
j>=0;
j--)
2850 for(
i=cnt-1;
i>=0;
i--)
2954 for (
int i = 0;
i < idsize;
i++)
2956 id_sort[
i].
p =
id->m[
i];
2960 int index, index_i, index_j;
2962 for (
int j = 1;
j < idsize;
j++)
2966 index_i = id_sort[
i].
index;
2967 index_j = id_sort[
j].
index;
2968 if (index_j > index_i)
2993 if (strat->
P.t_p==
NULL)
3002 bool nonTrivialSaturationToBeDone=
true;
3005 nonTrivialSaturationToBeDone=
false;
3012 if (mm[
i]>0) nonTrivialSaturationToBeDone=
true;
3017 if (!nonTrivialSaturationToBeDone)
break;
3019 if (nonTrivialSaturationToBeDone)
3048 poly
p=strat->
P.t_p;
3055 bool nonTrivialSaturationToBeDone=
true;
3058 nonTrivialSaturationToBeDone=
false;
3065 if (mm[
i]>0) nonTrivialSaturationToBeDone =
true;
3070 if (!nonTrivialSaturationToBeDone)
break;
3072 if (nonTrivialSaturationToBeDone)
3111 for (
int i=0;
i<
k;
i++)
3120 WerrorS(
"ideal generators must be variables");
3128 for (
int i=1;
i<=r->N;
i++)
3136 Werror(
"exponent(x(%d)^%d) must be 0 or 1",
i,li);
3151 if (strcmp(n,
"default")==0) alg=
GbDefault;
3152 else if (strcmp(n,
"slimgb")==0) alg=
GbSlimgb;
3153 else if (strcmp(n,
"std")==0) alg=
GbStd;
3154 else if (strcmp(n,
"sba")==0) alg=
GbSba;
3155 else if (strcmp(n,
"singmatic")==0) alg=
GbSingmatic;
3156 else if (strcmp(n,
"groebner")==0) alg=
GbGroebner;
3157 else if (strcmp(n,
"modstd")==0) alg=
GbModstd;
3158 else if (strcmp(n,
"ffmod")==0) alg=
GbFfmod;
3159 else if (strcmp(n,
"nfmod")==0) alg=
GbNfmod;
3160 else if (strcmp(n,
"std:sat")==0) alg=
GbStdSat;
3161 else Warn(
">>%s<< is an unknown algorithm",n);
3173 WarnS(
"requires: coef:field, commutative, global ordering, not qring");
3175 else if (alg==
GbSba)
3184 WarnS(
"requires: coef:domain, commutative, global ordering");
3194 WarnS(
">>modStd<< not found");
3203 WarnS(
"requires: coef:QQ, commutative, global ordering");
3209 WarnS(
">>satstd<< not found");
static int si_max(const int a, const int b)
static int si_min(const int a, const int b)
const CanonicalForm CFMap CFMap & N
static CanonicalForm bound(const CFMatrix &M)
poly singclap_pdivide(poly f, poly g, const ring r)
Class used for (list of) interpreter objects.
Coefficient rings, fields and other domains suitable for Singular polynomials.
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff 'n' represents the zero element.
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
const CanonicalForm int s
CanonicalForm divide(const CanonicalForm &ff, const CanonicalForm &f, const CFList &as)
const Variable & v
< [in] a sqrfree bivariate poly
void WerrorS(const char *s)
GbVariant syGetAlgorithm(char *n, const ring r, const ideal)
static void idPrepareStd(ideal s_temp, int k)
matrix idCoeffOfKBase(ideal arg, ideal kbase, poly how)
void idLiftW(ideal P, ideal Q, int n, matrix &T, ideal &R, int *w)
static void idLift_setUnit(int e_mod, matrix *unit)
ideal idSyzygies(ideal h1, tHomog h, intvec **w, BOOLEAN setSyzComp, BOOLEAN setRegularity, int *deg, GbVariant alg)
matrix idDiff(matrix i, int k)
BOOLEAN idTestHomModule(ideal m, ideal Q, intvec *w)
ideal idLiftStd(ideal h1, matrix *T, tHomog hi, ideal *S, GbVariant alg, ideal h11)
void idDelEquals(ideal id)
int pCompare_qsort(const void *a, const void *b)
ideal idQuot(ideal h1, ideal h2, BOOLEAN h1IsStb, BOOLEAN resultIsIdeal)
ideal idMinors(matrix a, int ar, ideal R)
compute all ar-minors of the matrix a the caller of mpRecMin the elements of the result are not in R ...
BOOLEAN idIsSubModule(ideal id1, ideal id2)
ideal idSeries(int n, ideal M, matrix U, intvec *w)
static ideal idGroebner(ideal temp, int syzComp, GbVariant alg, intvec *hilb=NULL, intvec *w=NULL, tHomog hom=testHomog)
ideal idCreateSpecialKbase(ideal kBase, intvec **convert)
static ideal idPrepare(ideal h1, ideal h11, tHomog hom, int syzcomp, intvec **w, GbVariant alg)
poly id_GCD(poly f, poly g, const ring r)
int idIndexOfKBase(poly monom, ideal kbase)
poly idDecompose(poly monom, poly how, ideal kbase, int *pos)
matrix idDiffOp(ideal I, ideal J, BOOLEAN multiply)
void idSort_qsort(poly_sort *id_sort, int idsize)
static ideal idInitializeQuot(ideal h1, ideal h2, BOOLEAN h1IsStb, BOOLEAN *addOnlyOne, int *kkmax)
ideal idElimination(ideal h1, poly delVar, intvec *hilb, GbVariant alg)
static ideal idSectWithElim(ideal h1, ideal h2, GbVariant alg)
ideal idMinBase(ideal h1)
ideal idSect(ideal h1, ideal h2, GbVariant alg)
ideal idMultSect(resolvente arg, int length, GbVariant alg)
void idKeepFirstK(ideal id, const int k)
keeps the first k (>= 1) entries of the given ideal (Note that the kept polynomials may be zero....
ideal idLift(ideal mod, ideal submod, ideal *rest, BOOLEAN goodShape, BOOLEAN isSB, BOOLEAN divide, matrix *unit, GbVariant alg)
represents the generators of submod in terms of the generators of mod (Matrix(SM)*U-Matrix(rest)) = M...
STATIC_VAR int * id_satstdSaturatingVariables
ideal idExtractG_T_S(ideal s_h3, matrix *T, ideal *S, long syzComp, int h1_size, BOOLEAN inputIsIdeal, const ring oring, const ring sring)
static void idDeleteComps(ideal arg, int *red_comp, int del)
ideal idModulo(ideal h2, ideal h1, tHomog hom, intvec **w, matrix *T, GbVariant alg)
ideal id_Farey(ideal x, number N, const ring r)
ideal id_Satstd(const ideal I, ideal J, const ring r)
ideal idModuloLP(ideal h2, ideal h1, tHomog, intvec **w, matrix *T, GbVariant alg)
static BOOLEAN id_sat_vars_sp(kStrategy strat)
ideal idMinEmbedding(ideal arg, BOOLEAN inPlace, intvec **w)
#define idDelete(H)
delete an ideal
#define idSimpleAdd(A, B)
void idGetNextChoise(int r, int end, BOOLEAN *endch, int *choise)
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
static BOOLEAN idHomModule(ideal m, ideal Q, intvec **w)
static intvec * idSort(ideal id, BOOLEAN nolex=TRUE)
static BOOLEAN idHomIdeal(ideal id, ideal Q=NULL)
static ideal idMult(ideal h1, ideal h2)
hh := h1 * h2
#define idMaxIdeal(D)
initialise the maximal ideal (at 0)
void idInitChoise(int r, int beg, int end, BOOLEAN *endch, int *choise)
ideal idFreeModule(int i)
static BOOLEAN length(leftv result, leftv arg)
intvec * ivCopy(const intvec *o)
idhdl ggetid(const char *n)
EXTERN_VAR omBin sleftv_bin
void * iiCallLibProc1(const char *n, void *arg, int arg_type, BOOLEAN &err)
leftv ii_CallLibProcM(const char *n, void **args, int *arg_types, const ring R, BOOLEAN &err)
args: NULL terminated array of arguments arg_types: 0 terminated array of corresponding types
void ipPrint_MA0(matrix m, const char *name)
void p_TakeOutComp(poly *p, long comp, poly *q, int *lq, const ring r)
ideal kMin_std(ideal F, ideal Q, tHomog h, intvec **w, ideal &M, intvec *hilb, int syzComp, int reduced)
poly kNF(ideal F, ideal Q, poly p, int syzComp, int lazyReduce)
ideal kSba(ideal F, ideal Q, tHomog h, intvec **w, int sbaOrder, int arri, intvec *hilb, int syzComp, int newIdeal, intvec *vw)
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
BOOLEAN nc_CheckSubalgebra(poly PolyVar, ring r)
static nc_type & ncRingType(nc_struct *p)
matrix mpNew(int r, int c)
create a r x c zero-matrix
matrix mp_MultP(matrix a, poly p, const ring R)
multiply a matrix 'a' by a poly 'p', destroy the args
matrix mp_Copy(matrix a, const ring r)
copies matrix a (from ring r to r)
void mp_MinorToResult(ideal result, int &elems, matrix a, int r, int c, ideal R, const ring)
entries of a are minors and go to result (only if not in R)
void mp_RecMin(int ar, ideal result, int &elems, matrix a, int lr, int lc, poly barDiv, ideal R, const ring r)
produces recursively the ideal of all arxar-minors of a
poly mp_DetBareiss(matrix a, const ring r)
returns the determinant of the matrix m; uses Bareiss algorithm
#define MATELEM(mat, i, j)
1-based access to matrix
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
#define __p_GetComp(p, r)
#define omFreeSize(addr, size)
#define omFreeBin(addr, bin)
#define SI_RESTORE_OPT1(A)
#define SI_RESTORE_OPT2(A)
#define TEST_OPT_RETURN_SB
#define TEST_V_INTERSECT_ELIM
#define TEST_V_INTERSECT_SYZ
#define TEST_OPT_NOTREGULARITY
static int index(p_Length length, p_Ord ord)
poly p_DivideM(poly a, poly b, const ring r)
poly p_Farey(poly p, number N, const ring r)
int p_Weight(int i, const ring r)
void p_Shift(poly *p, int i, const ring r)
shifts components of the vector p by i
int p_Compare(const poly a, const poly b, const ring R)
long p_DegW(poly p, const int *w, const ring R)
void p_SetModDeg(intvec *w, ring r)
int p_Var(poly m, const ring r)
void pEnlargeSet(poly **p, int l, int increment)
long p_Deg(poly a, const ring r)
static poly p_Neg(poly p, const ring r)
static poly p_Add_q(poly p, poly q, const ring r)
static void p_LmDelete(poly p, const ring r)
static long p_SubExp(poly p, int v, long ee, ring r)
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
static long p_MinComp(poly p, ring lmRing, ring tailRing)
static void p_Setm(poly p, const ring r)
static poly p_Copy_noCheck(poly p, const ring r)
returns a copy of p (without any additional testing)
static number p_SetCoeff(poly p, number n, ring r)
static poly pReverse(poly p)
static poly p_Head(const poly p, const ring r)
copy the (leading) term of p
static int p_LmCmp(poly p, poly q, const ring r)
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
static void p_Delete(poly *p, const ring r)
static void p_GetExpV(poly p, int *ev, const ring r)
static poly p_LmFreeAndNext(poly p, ring)
static poly p_Copy(poly p, const ring r)
returns a copy of p
void rChangeCurrRing(ring r)
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Compatiblity layer for legacy polynomial operations (over currRing)
#define pHead(p)
returns newly allocated copy of Lm(p), coef is copied, next=NULL, p might be NULL
#define pGetComp(p)
Component.
#define pSetCoeff(p, n)
deletes old coeff before setting the new one
#define pSeries(n, p, u, w)
#define pGetExp(p, i)
Exponent.
#define pSetmComp(p)
TODO:
#define pEqualPolys(p1, p2)
#define pDivisibleBy(a, b)
returns TRUE, if leading monom of a divides leading monom of b i.e., if there exists a expvector c > ...
void pTakeOutComp(poly *p, long comp, poly *q, int *lq, const ring R=currRing)
Splits *p into two polys: *q which consists of all monoms with component == comp and *p of all other ...
#define pCopy(p)
return a copy of the poly
poly prMoveR(poly &p, ring src_r, ring dest_r)
ideal idrMoveR(ideal &id, ring src_r, ring dest_r)
poly prCopyR(poly p, ring src_r, ring dest_r)
ideal idrCopyR(ideal id, ring src_r, ring dest_r)
ideal idrMoveR_NoSort(ideal &id, ring src_r, ring dest_r)
poly prMoveR_NoSort(poly &p, ring src_r, ring dest_r)
ideal idrCopyR_NoSort(ideal id, ring src_r, ring dest_r)
void PrintS(const char *s)
void Werror(const char *fmt,...)
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
ring rAssure_SyzComp(const ring r, BOOLEAN complete)
BOOLEAN nc_rComplete(const ring src, ring dest, bool bSetupQuotient)
ring rAssure_SyzOrder(const ring r, BOOLEAN complete)
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
void rDelete(ring r)
unconditionally deletes fields in r
void rSetSyzComp(int k, const ring r)
ring rAssure_dp_C(const ring r)
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
static BOOLEAN rField_is_Domain(const ring r)
static BOOLEAN rIsLPRing(const ring r)
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
static BOOLEAN rField_is_Q(const ring r)
static BOOLEAN rIsNCRing(const ring r)
static short rVar(const ring r)
#define rVar(r) (r->N)
BOOLEAN rHasGlobalOrdering(const ring r)
#define rField_is_Ring(R)
ideal idInit(int idsize, int rank)
initialise an ideal / module
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix
matrix id_Module2Matrix(ideal mod, const ring R)
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
int id_ReadOutPivot(ideal arg, int *comp, const ring r)
void id_DelMultiples(ideal id, const ring r)
ideal id = (id[i]), c any unit if id[i] = c*id[j] then id[j] is deleted for j > i
ideal id_Matrix2Module(matrix mat, const ring R)
converts mat to module, destroys mat
ideal id_SimpleAdd(ideal h1, ideal h2, const ring R)
concat the lists h1 and h2 without zeros
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
void id_Shift(ideal M, int s, const ring r)
ideal id_ChineseRemainder(ideal *xx, number *q, int rl, const ring r)
long sm_ExpBound(ideal m, int di, int ra, int t, const ring currRing)
ring sm_RingChange(const ring origR, long bound)
void sm_KillModifiedRing(ring r)
intvec * syBetti(resolvente res, int length, int *regularity, intvec *weights, BOOLEAN tomin, int *row_shift)
void syGaussForOne(ideal syz, int elnum, int ModComp, int from, int till)
resolvente sySchreyerResolvente(ideal arg, int maxlength, int *length, BOOLEAN isMonomial=FALSE, BOOLEAN notReplace=FALSE)
ideal t_rep_gb(const ring r, ideal arg_I, int syz_comp, BOOLEAN F4_mode)
THREAD_VAR double(* wFunctional)(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
void wCall(poly *s, int sl, int *x, double wNsqr, const ring R)
double wFunctionalBuch(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)